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A B S T R A C T

Simulated seismic models are important tools for a more cost-effective oil exploration. Model building
is a computationally intensive process since it requires repeated soluticm of the Acoustic Wave Equation

(AWE) assuming different sound velocity distributions. For realistic 3D models, each solution of the AWE
involves a number of spatial grids on the order of millions and a number of time steps on the order of
thousands, resulting in massive CPU time and memory storage requirements. In fact, current estimates
indicate that building such models requires a computation time of the order of several thousand GFLOPS
hours. Emerging massively parallel MIMD architectures offer both the computing power and memory storage
“required for tackling realistic 3D models. Consequently, there are extensive ongoing research efforts on
efficient implementation of the existing algorithms for solution of the AWE on these architectures.

Most existing algorithms are based on the explicit methods for solution of the AWE. These algorithms
are efficient for parallel computation since, at each time step, they mainly involve a highly sparse matrix-
vector multiplication with an optimal computational complexity of the order of the number of spatial grid
points. Also, further improvement in the computational efhciency of these algorithms have been achieved
by increasing their spatial accuracy (from the conventional fourth order). However, due to their stability
constraint, the explicit methods require a very large number of time steps, resulting in excessive compu-
tation and storage requirements. The implicit methods offer the advantage of unconditional stability, thus
demanding a much smaller number of time steps. However, this superior numerical property is achieved at

the cost of significant increase in the computation cost per time step and the loss of efficiency for parallel
implementation since, at each time step, the solution of a sparse linear system is now required. It is there-
fore clear that a promising direction to achieve a greater overall computational efficiency in solution of the
AWE is to seek novel methods which preserve the parallel computational efiicie]lcy of the explicit methods,
offer the unconditional stability of the implicit methods, and achieve a higher accuracy in both spatial and
temporal domains.

In this paper we present such a novel method. It is an explicit method in the sense that, at each
time step, it mainly involves sparse matrix-vector multiplications with high efflc.iency for parallelization  and
with a computational cost proportional to the number of spatial grid points. It is also unconditionally
stable and thus allows a much larger time step size. J?urtherrnore,  higher, c)rder accuracy in both time
and space can be achieved with a constant factor increase in the computational cost per time step, thus
preserving the asymptotic computational cost. We discuss the ]rlathematical  foundation of this method by
first deriving an unconditionally stable explicit algorithm with a second-order accuracy in both time and
space. We then discuss the derivation of more accurate algorithn’1$  (fourth order accurate in time and fourth
and higher order accurate in space). We also discuss some techniques for a more efficient implementation
of resulting algorithms on massively parallel MIMD architectures. The incorporation of the first and higher
order absorbing boundary conditions in the algorithms is also analyzed.
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